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An asymptotic solution of the problem of a temperature field in carbonate-containing oil-gas beds exposed to
the action of an acid is obtained. Expressions for the concentration fields of the acid and reaction products
and the porosity and temperature in the zero and first approximation have been constructed. The space-time
distributions of the temperature have been calculated, and the contribution of various physical processes has
been analyzed.

Under natural conditions, the skeleton of porous oil-gas beds often contains carbonate rocks. In order to in-
crease the efficiency of production of oil or gas under such conditions, acid treatment is employed, which consists of
a chemically active reagent being injected into a porous bed, which is surrounded by impermeable cap and base rocks
(Fig. 1). As a result of partial corrosion of the bed skeleton, its porosity and permeability are increased. A lesser
amount of specific energy is then required for oil extraction from the bed treated. The chemical reagent often used for
this purpose is hydrochloric acid, which reacts with limestone (CaCO3 + 2HCl = CaCl2 + H2CO3 + Q). The heat of re-
action Q goes for heating up the porous medium. Measurement of the magnitude of the temperature effect with the
aid of thermometers sunk into a bore-hole makes it possible to control the process of acid treatment.

However, despite the wide application, the temperature fields that develop in the process of interaction of the
acid with the carbonate skeleton have been inadequately studied. In this work, based on asymptotic methods, a solution
was obtained for the problem of the temperature fields that develop in oil-gas beds after instantaneous injection of acid
into them, when a relatively small fraction of the acid reacts for the time of injection. This regime is optimum for
increasing the depth of treatment, and for this purpose special reagents that slow down the reaction rate are added into
a solution [1]. In conformity with what has been said above, it is assumed for simplicity in the problem considered
below that the time of acid injection into the bed is much shorter than the time of the chemical reaction in it.

Description of the Problem. We will consider a temperature problem in a cylindrical coordinate system,
where the medium is represented by three regions with plane interfaces (zd = %h) that are perpendicular to the zd axis
(Fig. 1). The first and second regions are impermeable, and the middle region of thickness 2h is porous. A reagent is
injected into the region −h < zd < h from a bore-hole of radius r0, the axis of which coincides with the zd axis. In de-
scribing the temperature problem the following assumptions were made: the porous carbonate bed is assumed to be ho-
mogeneous and anisotropic as concerns its hydrodynamic and thermophysical properties; the temperatures of the liquid
and skeleton of the porous medium at each point coincide; the natural thermal field of the Earth is considered station-
ary (the bed is at a depth of 1–2 km; therefore, diurnal and seasonal temperature fluctuations do not reach it).

Estimates indicate that changes in the heat-conduction coefficient upon complete substitution of oil by a solu-
tion of hydrochloric acid in oil-carrying sandstone with a porosity of m = 0.2 do not exceed 4% with thermal conduc-
tivities not exceeding 2 W/(K⋅m) for the skeleton, 0.1 W/(K⋅m) for oil, and 0.5 W/(K⋅m) for water; changes in the
thermal conductivity in the case of incomplete displacement or where the zone of the bed near the bore-hole is in-
itially saturated with water are several-fold smaller. This allows one to neglect the difference in the thermal conduc-
tivity of the zone with an acid solution in the bed and the zone of displaced oil as well as the dependence of the
heat-conduction coefficient on the radial coordinate, which highly simplifies the statement of the problem.
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Mathematical Statement of the Temperature Problem. For all regions the problem is represented by a heat-
conduction equation (for the middle region with sources Lqd):
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The conditions of equality of temperatures and heat fluxes are assigned at the boundary:
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There are no temperature perturbations at the initial time instant:

Td td=0 = T1d td=0 = T2d td=0 = 0 . (6)

The boundary condition is given in the form

lim Tid rd+ zd → ∞ = 0 . (7)

Fig. 1. Geometry of the problem.

257



The subscripts i = 1 and 2 relate to the parameters of the cap and base rocks, respectively. The solution is assumed
to be limited and symmetrical on the zd axis. An expression for the density function of the sources qd in Eq. (3) can
be found from the corresponding chemical-hydrodynamic problem.

Chemical-Hydrodynamic Problem. The mathematical statement of the problem in the zone of reaction
rd < R is represented by the continuity equation [4]:

for the acid

d (mρa)
dtd

 = − kα (m) ρa
l
 = − kqd , (8)

for the porous-medium skeleton

dm

dtd
 = α (m) 

ρa
l

ρs
 = 

qd

ρs
 , (9)

for the reaction products

d (mρn)
dtd

 = knα (m) ρa
l
 , (10)

where i = 1, 2 for reaction of the first and second orders, respectively; the subscript n denotes the number of the re-
action product: n = 1 for CaCl2 and n = 2 for H2CO3; α(m) is defined below. The initial conditions are given in the
form

m td=0 = m0 ,   ρa td=0 = ρa0 . (11)

The considered problem (8), (9), and (11) is nonlinear. Its solution can be found by substituting the expres-
sion for ρa

l  from (9) into (8) with subsequent integration of the equation obtained for porosity. Finally, we arrive at
the following result:

for a first-order reaction

  ∫ 
m0

m
m′dm′

[m′ − m0 (1 + ρa0
 ⁄ (kρs))] α (m′)

 = − ktd , (12)

ρa = ρsk 




m0

m
 



1 + 

ρa0

kρs




 − 1




 ; (13)

for a second-order reaction

  ∫ 

m0

m
m′

2
dm′

[m′ − m0 (1 + ρa0
 ⁄ (kρs))]

2
 α (m′)

 = ρsk
2
td , (14)

ρa = ρsk 




m0

m
 



1 + 

ρa0

kρs




 − 1




 . (15)

For reaction products we will have the following solution:
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ρn = 
kn

m
 ∫ 
0
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l
dτ′ . (16)

The results of the calculations performed on the basis of the above expressions are given below. Depending
on the specific realization of the process, the density of sources is determined according to the expression qd =
α(m)ρa or qd = α(m)ρa

2 for chemical reactions of the first and second order, respectively.
It is known that the rate of reaction depends on the area of contact of reagents. In a porous medium this area

is related to the porosity coefficient m. Below, we determine the dependences of the reaction-rate constant on porosity
for the cases where a porous medium in the initial and final states can be represented as a system of pipes filled with
an acid or a skeleton in the form of spheres between which there is an acid solution. For cylindrical cavities in the
initial and final states the following expression was obtained:

α (m) = α0 √ m (1 − m)  ; (17)

for cylindrical cavities in the initial state and spherical residues of the skeleton in the final state the following expres-
sion was obtained:

α (m) = α0 √m  
3√ (1 − m)2 ; (18)

for spherical cavities in the initial state and spherical residues of the skeleton in the final state the expression obtained
was

α (m) = α0 
3√((1 − m) m)2  , (19)

where α0 is the reaction-rate factor determined experimentally.
We note that the content of the acid depends on the saturability s of the acid solution in the displacement

zone. The contribution of the saturability is taken into account as follows. The velocities of the liquids (and the rela-
tionship between them) are described by the Darcy equations:
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The relative permeabilities of the phases of the replaceable oil fo(s) and of the replacing aqueous solution of
acid fw(s) on the saturability of this solution s are defined by the dependences
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(21)

The value of the residual saturability with oil is approximately equal to so,r = 0.1 and saturability of the aque-
ous solution of acid to sw,r = 0.1. We will write the continuity equations for oil and water on the assumption of in-
compressibility:

m 
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∂τ
 + 

1
rd

 
∂

∂rd
 (rdvw) = 0 ,   m 

∂ (1 − s)
∂τ

 + 
1
rd

 
∂

∂rd
 (rdvo) = 0 . (22)

Here τ is the time of injection, which, by assumption, is much shorter than the time of reaction. Summing up (22)
and having integrated the resulting equation, we have
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rd (vw + vo) = r0vw0 . (23)

Having substituted Eq. (20) into Eq. (23), we find
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Equations (24) and (22) yield the Buckley–Leverett equation for saturation:
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The solution of Eq. (13) under the initial condition s(td = 0) = s0(rd) has the form
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This equation is valid in the region with rd < R, i.e., before the displacement front. The equation for saturation at the
displacement front rd = R results from equating the saturation jump rate obtained from the mass balance in the dis-
placement zone to the rate from relation (25):

∂
∂s

 f (sd.f) = 
f (sd.f) − f (so)

sd.f − so
 . (27)

If an aqueous solution of the acid is injected into the bed through the bore-hole, then the isosates with values
of s evolve according to the relation

 ∫ 
r0

rd

m (r′) r′dr′ = F (s, µ) τ . (28)

Based on the foregoing equations, numerous calculations of saturation fields on injection of an acid solution
into a bore-hole were performed. Analysis of the results of calculations has shown that at a relative viscosity µ =
µo

 ⁄ µw equal to about unity (the conditions for the deposits of West Siberia) changes in saturation in the displacement
zone attain D10%. At a relative viscosity of an order of 10, the range of change in saturation in the displacement zone
is equal to about 20%. Deviations from average values of saturation under such conditions are several times smaller;
therefore, in the temperature problem the change in saturation can be neglected. We note that account for the contri-
bution of saturation presents no difficulties and is performed by formal replacement of mi by misi in the dependences
given above and below.

Temperature in an Adiabatically Isolated System. The temperature field in the zone of reaction, with the
thermal conductivity being ignored, is described by the equation

dTd

dtd
 = 

Lqd

cp.liq
 . (29)

The volume heat capacity of the porous medium cp.liq is defined by the volume heat capacities of the skeleton cs and
of the saturating liquid cliq, which for simplicity are assumed to be constant, cp.liq = (1 − m)cs + mcliq. Having substi-
tuted the expression for qd from (9) and integrated the result, we obtain the dependence of the temperature on a
change in the porosity ∆m = m − m0:
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The dependence of temperature on the density of the acid was obtained using Eqs. (8) and (13):
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If the acid is spent entirely (ρa = 0), then the latter expression yields
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Approximate expressions for temperature hold on condition of sufficient smallness of additions to unity under the loga-
rithm sign.

Solution of the Temperature Problem by Asymptotic Methods. In dimensionless coordinates the problem
(1)–(7) on assumption of axial symmetry takes the following form:
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T t=0 = T1 t=0 = T2 t=0 = 0 ; (38)

lim Ti r+ z → ∞ = 0 , (39)

where χ = c1ρ1/(cρ); r = rd
 ⁄ h; z = zd

 ⁄ h; t = tdaz1
 ⁄ h2; T = Td

 ⁄ T0; Ti = Tid
 ⁄ T0; T0 = Lm0ρa0/(kcp.liq); and q =

kqdh2/(m0ρa0az1).
In such a statement an analytical solution of the problem presents considerable difficulties. To obtain approxi-

mate solutions, we have employed an asymptotic method. As the expansion parameter we take the ratio of the heat
conductivities of the cap medium and carbonate-containing bed ε = λz1

 ⁄ λz. We find the solution of the problem in the
form of asymptotic series in the parameter ε:
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number of the expansion coefficient. Having substituted (40) into (33)–(39) and grouped the terms with the same order
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Statement of the Problem in the Zero Approximation. From (43), for the zero approximation we have
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where A(r, t) is also independent of z. Having integrated (49), we obtain an expression for the temperature in the bed
in the first approximation and for its derivative with respect to z:
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 −
λz2

λz1
 
∂T2

(0)

∂z








z=−1

    






 ,    B (r, t) = 

1

2
 







∂T1
(0)

∂z



 z=1

 +
λz2

λz1
 
∂T2

(0)

∂z








z=−1

    






 . (54)

With Eq. (54) taken into account, Eq. (49) is transformed as

∂T
(0)

∂t
 − q − 

ar
az1r

 
∂
∂r

 



r 

∂T
(0)

∂r




 = 

χ
2

 







∂T1
(0)

∂z



 z=1

 −
λz2

λz1
 
∂T2

(0)

∂z






 z=−1

    






 . (55)

The final statement of the temperature problem for the zero approximation has the form

∂T1
(0)

∂t
 − 

ar1

az1r
 

∂

∂r
 






r 

∂T1
(0)

∂r







 − 

∂2
T1

(0)

∂z
2  = 0 ,   z > 1 ,   r > 0 ,   t > 0 ; (56)

∂T2
(0)

∂t
 − 

ar2

az1r
 

∂

∂r
 






r 

∂T2
(0)

∂r







 − 

az2

az1
 
∂2

T2
(0)

∂z
2  = 0 ,   z < − 1 ,   r > 0 ,   t > 0 ; (57)

∂T
(0)

∂t
 − q − 

ar

az1r
 
∂
∂r

 



r 

∂T
(0)

∂r




 = 

χ
2

 







∂T1
(0)

∂z



 z=1

 −
λz2

λz1
 
∂T2

(0)

∂z








z=−1

    






 ,    z  < 1 ,   r > 0 ,   t > 0 ; (58)

T
(0)

 = T1
(0) z=1 = T2

(0) z=−1 ; (59)

T
(0) t=0 = T1

(0) t=0 = T2
(0) t=0 = 0 ; (60)
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lim Ti
(0) r+ z → ∞ = 0 . (61)

Solution of the Problem in the Zero Approximation without Allowance for Radial Heat Conduction. Ne-
glecting the radial heat conduction for all the regions, instead of (56)–(61) we obtain a simpler problem:

∂T1
(0)

∂t
 − 

∂2
T1

(0)

∂z
2  = 0 ,   z > 1 ,   r > 0 ,   t > 0 ; (62)

∂T2
(0)

∂t
 − 

az2

az1
 
∂2

T2
(0)

∂z
2  = 0 ,   z < 1 ,   r > 0 ,   t > 0 ; (63)

∂T
(0)

∂t
 − 

χ
2

 







∂T1
(0)

∂z



 z=1

 −
λz2

λz1
 
∂T2

(0)

∂z






 z=−1

    






 = q (r, t) ,    z  < 1 ,   r > 0 ,   t > 0 ; (64)

T
(0)

 = T1
(0) z=1 = T2

(0) z=−1 ; (65)

T
(0) t=0 = T1

(0) t=0 = T2
(0) t=0 = 0 ; (66)

lim T1,2
(0) r+ z → ∞ = 0 . (67)

Having used the Laplace–Carson transformation [2]

Ti 
(0)tr

 = p ∫ 
0

∞

exp (− pt) Ti
(0)

 (t) dt , (68)

we write problem (62)–(67) in the space of transforms

pT1
(0)tr

 − 
∂2

T1
(0)tr

∂z
2

 = 0 ,   z > 1 ; (69)

pT2
(0)tr

 − 
az2

az1

 
∂2

T2
(0)tr

∂z
2

 = 0 ,   z < − 1 ; (70)

pT
(0)tr

 − 
χ
2

 







∂T1
(0)tr

∂z



 z=1

 −
λz2

λz1
 
∂T2

(0)tr

∂z








z=−1

    






 = q (r, p) ,    z  < 1 ; (71)

T
(0)tr

 = T1
(0)tr z=1 = T2

(0)tr z=−1 ; (72)

lim T1,2
(0)tr r+ z→  ∞ = 0 . (73)
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Solution of problem (69)–(73) will be presented as follows:

T1
(0)tr

 = T
(0)tr

 exp (− √p  (z − 1)) ,   z > 1 ; (74)

T2
(0)tr

 = T
(0)tr

 exp 



√p 

az1

az2
 (z + 1)




 ,   z < − 1 . (75)

Since

∂T1
(0)tr

∂z



 z=1

 = − √p  T
(0)tr

 ,   
∂T2

(0)tr

∂z



 z=−1

 = √p 
az1

az2
 T

(0)tr
 ,

for the middle region the solution in the space of transforms has the form

T
(0)tr

 = 
q (r, p)

p + √p  γ
 ,   γ = 

χ
2

 







1 + 

λz2

λz1
 √az1

az2







 ,    z  < 1 .

(76)

The obtained solution (74)–(76) in the space of inverted transforms will be presented in the form

T
(0)

 = ∫ 
0

t

q (r, τ′) exp (γ2
 (t − τ′)) erfc (γ √t − τ′ ) dτ′ ,    z  < 1 ,   r > 0 ,   t > 0 ; (77)

T1
(0)

 = ∫ 
0

t

q (r, τ′) exp (γ (z − 1) + γ2
 (t − τ′)) erfc 





z − 1

2 √t − τ′
 + γ √t − τ′ 



 dτ′ ,   z > 1 ,   r > 0 ,   t > 0 ; (78)

T2
(0)

 = ∫ 
0

t

q (r, τ′) exp 


γ √az1

az2
  z + 1  + γ2

 (t − τ′)



 erfc 





 z + 1

2 √t − τ′
 
az1

az2
 + γ √t − τ′ 



 dτ′ ,   z < − 1 . (79)

Solution of the Problem with Account for the Radial Component of Heat Conduction (56)–(61). In the
particular case of ar1 = ar2 = ar, this solution is found on the basis of the Hankel and Laplace–Carson transforma-
tions:

T1
(0)

 = 
1

2Λ
 ∫ 
0

∞

r′dr′ ∫ 
0

t
q (r′, τ′)

t − τ′
 I0 





rr′

2Λ (t − τ′)




 exp 







γ (z − 1) + γ2

 (t − τ′) − 
r
2
 + r′

2

4Λ (t − τ′)







 ×

× erfc 




z − 1

2 √t − τ′
 + γ √t − τ′ 



 dτ′ ,   z > 1 ,   r > 0 ,   t > 0 ; (80)

T2
(0)

 = 
1

2Λ
 ∫ 

0

∞

r′dr′ ∫ 

0

t
q (r′, τ′)

t − τ′
 I0 








rr′

2Λ (t − τ′)







 exp 







γ  z + 1  √az1

az2
 + γ2

 (t − τ′) − 
r
2
 + r′

2

4Λ (t − τ′)







 ×
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× erfc 








 z + 1

2 √t − τ′
 √az1

az2
 + γ √t − τ′







 dτ′ ,   z < − 1 ,   r > 0 ,   t > 0 ; (81)

T
(0)

 = 
1

2Λ
 ∫ 

0

∞

r′dr′ ∫ 

0

t
q (r′, τ′)

t − τ′
 I0 





rr′

2Λ (t − τ′)




 exp 







γ2

 (t − τ′) − 
r
2
 + r′

2

4Λ (t − τ′)







 erfc  γ √t − τ′ 

  dτ′ ,    z  < 1 , (82)

where λ = ar
 ⁄ aaz1.

Solution of the Problem in the First Approximation. To construct solutions in the first approximation and
higher-order approximations, an additional integral condition is needed [3, 5]. It is obtained by averaging (35) with
subsequent use of the uniqueness theorem for the solution of corresponding problems and has the form sT(i)

t = 0. In
the given problem this condition is satisfied at any values of r, as can be seen from the solutions given below. For
the first coefficient of expansion, the statement of the problem, with the radial component of heat conduction being
ignored, has the form

∂T1
(1)

∂t
 − 

∂2
T1

(1)

∂z
2  = 0 ,   z > 1 ,   r > 0 ,   t > 0 ; (83)

∂T2
(1)

∂t
 − 

az2

az1
 
∂2

T2
(1)

∂z
2  = 0 ,   z < 1 ,   r > 0 ,   t > 0 ; (84)

∂T
(1)

∂t
 − χ 

∂2
T

(2)

∂z
2  = 0 ,    z  < 1 ,   r > 0 ,   t > 0 ; (85)

∂T1
(1)

∂z



 z=1

 =
∂T

(2)

∂z



 z=1

 ,   
∂T2

(1)

∂z



 z=−1

 =
λz2

λz1
 
∂T

(2)

∂z








z=−1

 ; (86)

T1
(1) z=1 = T

(1) z=1 ,   T2
(1) z=−1 = T

(1) z=−1 ; (87)

T
(1) t=0 = T1

(1) t=0 = T2
(1) t=0 = 0 ; (88)

lim T1,2
(1) r+ z → ∞ = 0 . (89)

The solution of problem (83)–(89) can be found similarly to the zero approximation. According to (85) and (51) we
have

L
^
T

(1)
 = 

z
2

2
 L
^
A (r, t) + zL

^
B (r, t) + L

^
E (r, t) = 

∂2
T

(2)

∂z
2

 ,   L
^
 = 

1

χ
 
∂

∂t
 . (90)

Integration of the resulting expression yields

∂T
(2)

∂z
 = 

z
3

6
 L
^
A (r, t) + 

z
2

2
 L
^
B (r, t) + zL

^
E (r, t) + D (r, t) . (91)
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Having compiled a system of equations for z = 1 and z = −1, we have L
^
E(r, t):

L
^
E (r, t) = 

1

2
 







∂T1
(1)

∂z



 z=1

 −
λz2

λz1
 
∂T2

(1)

∂z








z=−1

    






 − 

1

6
 L
^
A (r, t) . (92)

According to (54), (92), and (90), the equation for determining the first coefficient of expansion of T(1) is represented
in the form

L
^
T

(1)
 = 





z
2

4
 − 

1

12
 + 

z

2





L
^
 
∂T1

(0)

∂z



 z=1

 − 
λz2

λz1
 




z
2

4
 − 

1

12
 − 

z

2





L
^
 
∂T2

(0)

∂z



 z=−1

 +

+ 
1

2
 







∂T1
(1)

∂z



 z=1

 −
λz2

λz1
 
∂T2

(1)

∂z








z=−1

    






 ,    z  < 1 . (93)

With account for (93), the problem (83)–(89) for the first coefficient of expansion in the space of the
Laplace–Carson inverted transforms will be written in the form

pT1
(1)tr

 − 
∂2

T1
(1)tr

∂z
2  = 0 ,   z > 1 ; (94)

pT2
(1)tr

 − 
∂2

T2
(1)tr

∂z
2  = 0 ,   z < − 1 ; (95)

pT
(1)tr

 − 
χ
2

 







∂T1
(1)tr

∂z



 z=1

 −
λz2

λz1
 
∂T2

(1)tr

∂z








z=−1

    






 =

3z
2
 + 6z − 1

12
 p 

∂T1
(0)tr

∂z



 z=1

 −

− 
λz2

λz1
 
3z

2
 − 6z − 1

12
 p 

∂T2
(0)tr

∂z








z=−1

 ,    z  < 1 ; (96)

T
(1)tr z=1 = T1

(1)tr z=1 ;   T
(1)tr z=−1 = T2

(1)tr z=−1 ; (97)

lim T1,2
(1)tr r+ z → ∞ = 0 . (98)

The solution of the problem in the space of inverted transforms is determined similarly to the solution in the
zero approximation:

T
(1)tr

 = − 
(3z

2
 + 6z − 1 + Ω (3z

2
 − 6z − 1)) √p  q (r, p)

12 (√p  + γ)2
 ,   Ω = 

λz2

λz1
 √az1

az2
 ,    z  < 1 ; (99)

T1
(1)tr

 = − 
(2 − Ω) √p  q (r, p)

3 (√p  + γ)2
 exp (− √p  (z − 1)) ,   z > 1 ; (100)
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T2
(1)tr

 = − 
(2Ω − 1) √p  q (r, p)

3 (√p  + γ)2
 exp 



√p 

az1

az2

 (z + 1)



 ,   z < − 1 . (101)

The solution for the first coefficients of expansion in the space of inverted transforms has the form

T
(1)

 = − 
3z

2
 + 6z − 1 + Ω (3z

2
 − 6z − 1)

12
 ∫ 

0

t

q (r, τ′) ×

× 







1 + 2γ2
 (t − τ′)

√ π (t − τ′)
 − (2γ + 2γ3

 (t − τ′)) exp (γ2
 (t − τ′)) erfc (γ √t − τ′ )







 dτ′ ,    z  < 1 ,   r > 0 ,   t > 0 ; (102)

T1
(1)

 = − 
2 − Ω

3
 ∫ 
0

t

q (r, τ′) 







1 + 2γ2
 (t − τ′)

√ π (t − τ′)
 exp 




− 

(z − 1)2

4t




 − (2γ + 2γ3

 (t − τ′) + γ2
 (z − 1)) ×

× exp ((z − 1) γ + γ2
 (t − τ′)) erfc 





(z − 1)

2√t − τ′
 + γ √t − τ′ 







 dτ′ ,   z > 1 ,   r > 0 ,   t > 0 ; (103)

T2
(1)

 = − 
2Ω − 1

3
 ∫ 
0

t

q (r, τ′) 







1 + 2γ2
 (t − τ′)

√ π (t − τ′)
 exp 




− 

az1
az2

 
(z + 1)2

4t




 − 




2γ + 2γ3

 (t − τ′) + γ2
 √az1

az2
  z + 1




 ×

× exp 


√az1

az2
  z + 1  γ + γ2

 (t − τ′)



 erfc 






√

az1
az2

 
 z + 1

2 √t − τ′
 + γ √t − τ′














 dτ′ , z < − 1 ,   r > 0 ,   t > 0 . (104)

For the first approximation, T = T(0) + εT(1), Ti = Ti
(0) + εTi

(1), i = 1, 2. Thus, with the aid of the asymptotic method
we obtained simple equations to investigate temperature fields in oil-gas beds exposed to the action of an acid.

Analysis of the Results of Calculations. Based on the solutions presented, we carried out calculations of
chemical hydrodynamic and temperature fields at different coefficients of reaction α(m). Figure 2 presents the depend-
ence of the density of the acid and the porosity on the dimensionless time α0td (td is the dimensional time). The cal-
culations were performed at ρs = 2930 kg/m3, ρa0 = 212.5 kg/m3, m0 = 0.15, and k = 0.73. It is seen from Fig. 2
that with time the density of the injected acid is decreased and the porosity is increased. For the first-order reaction at
small porosities, the rates of change in the porosity and in the acid density are minimum for the case where α(m) is
defined by Eq. (19), corresponding to the case of spherical cavities in the initial and final states (curve 3); at the same
time curves 1 and 2 practically coincide. The characteristic dimensionless time of the process is equal here to
α0td C 3; in the remaining cases the characteristic time of the reaction is shorter; in particular, for the second-order re-
action α0td C 0.1. Taking into account the influence of inhibitors, the corresponding characteristic times are increased.
It follows from Fig. 2b that the change in porosity with one cycle of injection is equal approximately to 2%. As the
initial porosity is increased, its corresponding increments are increased.

The foregoing shows that considerable changes in the porosity can be attained only by multiply injecting an
acid. Figure 3 presents the dependence of the final porosity on the number of injections. For example, at an initial po-
rosity of 10%, 24 cycles of acid injection are needed for the carbonate skeleton to be broken down completely.

The so-called critical porosity m = 0.910 is very important for practical applications. It corresponds to the
case where a single injection of hydrochloric acid with a maximum density of ρa0 = 212.5 kg/m3 completely attacks
the carbonate bed. This means that at smaller porosities the skeleton cannot be dissolved completely as a result of a
single injection of the acid.
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In order to use thermal measurements in controlling acid treatment of beds it is important to know the value
of the maximum temperature anomaly caused by exposure to an acid without taking into account heat exchange of the
bed with the surrounding rocks (Fig. 4). From Fig. 4a it follows that the maximum value of thermal anomaly is at-
tained at a porosity of m = 0.91 and a density of the injected acid in a solution of ρa0 = 212.5 kg/m3 and corresponds
to ∆T = 53.9 K. The calculations were carried out at M = 0.1 kg/mole (CaCO3), ρs = 2930 kg/m3, cs = 1.67⋅106

J/(K⋅m3), cw = 4.19 ⋅106 J/(K⋅m3), ρw = 1000 kg/m3, and L = 830 kJ/kg. The dependence of the magnitude of thermal
anomaly on the density of the acid injected is linear (Fig. 4b). At an initial porosity higher than the critical one,

Fig. 2. Density of the acid ρa and porosity m vs. the time for the first-order
reaction: 1) calculations by Eq. (17); 2) (18); 3) (19).

Fig. 3. Porosity m vs. the number of injections N at different initial values of
the porosity m0: 1) m0 = 0.1; 2) 0.15; 3) 0.2; 4) 0.25.

Fig. 4. Dependence of the maximum value of the thermal anomaly ∆T of a
single exposure to an acid on the initial porosity m0 (a) and on the density of
the injected acid ρa0 (b): (a) 1) ρa0 = 212.5; 2) 150; 3) 100; 4) 50; 5) 20
kg/m3; (b) 1) m0 = 0.1; 2) 0.2; 3) 0.5; 4) 0.91; 5) 0.95; 6) 0.98.
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m > 0.91, there are portions on the curves demonstrating that with increase in the density of the acid the temperature
attains a maximum value and remains unchanged on further increase in the density; physically this corresponds to
complete dissolution of the skeleton.

Space-time dependences of the temperature anomaly caused by the interaction of the acid with the skeleton on
the bore-hole acid (r = 0) are presented in Fig. 5. The calculations were carried out at λz2 = λz1, az1 = az2 in the zero
and first approximations. It was also assumed that the radial dimensions of the reaction zone considerably exceeded
the bed thickness (R > h). In the opposite case, the calculations are to be performed with account for the radial heat
conduction ((88)–(90)). Figure 5a depicts the dependence of the relative temperature T on the dimensionless time t
(Fourier number Fo). It follows from the figure that the process of change in the temperature is completed at dimen-
sionless times t C 2.

Figure 5b presents the dependences of the relative temperature T on the dimensionless coordinate z at different
dimensionless times t in the zero approximation that corresponds to the temperature value averaged over the bed thick-
ness. The curves in the figure make it possible to determine the size of the temperature perturbation zone, the thick-
ness of which is approximately two times larger than that of the bed. The temperature curves in the first (curve 1) and
zero (curve 2) approximations at dimensionless time t ≈ 0.3 are compared in Fig. 5c. The comparison of these curves
shows that in the zero approximation the temperature within the bed is independent of z; the first approximation veri-
fies the temperature distribution, since it describes in more detail its dependence on the z coordinate within the bed. It
also follows from Fig. 5c that the zero approximation describes the temperature field under the indicated conditions
with an accuracy sufficient for the majority of practical cases.

Thus, based on the asymptotic method, a theory has been developed that allows calculation of temperature
fields in oil carbonate-containing beds exposed to the action of an acid. This opens up new prospects for developing
means of controlling the process of acid effect and improving its technology.

This work was carried out with financial support from the Russian Basic Research Foundation, grant 02-01-
97908 2002AG.

NOTATION

A, B, D, E, F, auxiliary functions; ari, azi, coefficients of radial and vertical thermal diffusivity of the ith

layer, m2/sec; cliq, cp.liq, cs, and cw, volume heat capacity of liquid with dissolved substances, of the bed, of the skele-

ton material, and of water, respectively, J/(K⋅m3); fo(s) and fw(s), phase permeability of oil and aqueous solution of

acid, respectively; h, half-thickness of the bed, m; J0(x), Bessel function of imaginary argument; I(t), single Heaviside

function; J0(x), Bessel function of real argument; k, k1, k2, stoichiometric coefficients; L, specific heat of reaction, J/kg;

L
^
, operator; M, molar mass, kg/mole; m, porosity; m0, initial porosity; N, number of injections of an acid solution; P,

pressure, Pa; p, parameter of the Laplace–Carson transformation; Q, reaction heat, J; qd and q, dimensional and dimen-

Fig. 5. Space-time distributions of the relative temperature T: a) dependence of
temperature in the zero approximation in the bed on dimensionless time t
(Fourier method); b) dependence of temperature in the zero approximation on
the dimensionless coordinate z at different values of the dimensionless time [1)
t = 0.1; 2) 0.5; 3) 1; 4) 1.2; 5) 1.6]; c) comparison between the first (curve 1)
and zero (curve 2) approximations at t = 0.3.
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sionless functions of mass sources, kg/(sec⋅m3); R, radius of the reaction zone, m; r0, radius of the bore-hole, m; rd,

zd, and r, z, dimensional and dimensionless cylindrical coordinates, m; s, saturation of an aqueous solution of an acid;

Tid, temperature of the ith zone, K; Ti, relative dimensionless temperature of the ith zone; Td and T, dimensional and

dimensionless temperatures of an oil-bearing bed, K; T0, maximum temperature anomaly, K; td and t, dimensional and

dimensionless time, sec; vo and vw, rate of filtration of oil and of an aqueous solution of an acid, respectively, m/sec;

vw0, rate of filtration of an aqueous solution of an acid at the inlet, m/sec; α(m), reaction-rate coefficient; δi,j,

Kronecker delta; ε, parameter of asymptotic expansion; λi, thermal conductivity, W/(K⋅m); µo and µw, viscosity of oil

and of an aqueous solution of the acid, respectively, Pa⋅sec; ρa, ρp.liq, ρs, ρw, ρ1, and ρ2, density of the acid in a so-

lution, of the bed, of the skeleton material, of water, calcium chloride, and carbonic acid in a solution, respectively,

kg/m3; τ, time of injection, sec; χ, relative volume heat capacity; erfc (x) = 
2

√π
 ∫
x

∞

exp (−u2)du. Subscripts: a, acid; d,

dimensional; i, ordinal number; liq, liquid; o, oil; p.liq, porous medium saturated with liquid; r, residual; r, z, direc-
tions; s, skeleton of a porous medium; w, water; d.f, displacement front; prime corresponds to integration variable. Su-
perscript: tr, transform.
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